Miller's planet orbiting Gargantua

Miller is a planet and the first planet in the system orbiting Gargantua. Miller takes its name from Dr. Miller, who landed on the planet and activaed the "thumbs up" beacon. It is also the first location the crew of the Endurance visit.

Backstory[edit | edit source]

12 years before the Endurance and its crew traveled through the black hole, NASA sent 12 landing pods through it, each carrying a scientist to assess a potentially habitable world. Miller was selected to land on this world. However, within a relative hour after her arrival, she encountered one of the massive tidal waves circling the planet. She was unable to negotiate the encounter and her landing pod was destroyed. She was suspected to have perished mere relative minutes before the arrival of the Endurance. When Cooper, Amelia, Doyle and CASE land they discover Miller's debris. Amelia goes out to search for the data recorder with Doyle and CASE when they find the wreckage of Miller's pod. Amelia decides to continue searching when Cooper spots the wave heading for them. He calls the crew back, but Amelia insists on finding the recorder and ends up pinned under heavy wreckage. As the wave approaches, Doyle sends CASE after Amelia and CASE successfully lifts up the debris and swiftly carries her back to the Ranger. Doyle was too slow and was subsequently swept away by the wave, killing him instantly.

Speculation[edit | edit source]

A tidal wave approaching on Miller's planet.

  • Despite the immense tidal wave, Doyle may have survived the encounter, but knocked unconscious, given that his spacesuit appeared undamaged. Even if a rescue team from Cooper Station were launched to Miller (and if the time dilation factor is exactly 1 hour per 7 years), around 9 hours would have passed for Doyle, but 64 years would've passed for everyone else. But if Doyle did survive and was rescued, he would suffer future shock given that it would have been a total of 65+ years that transpired while he was on Miller's planet. In a period of 9 hours, Doyle would certainly encounter many incoming waves before a rescue craft could find him, greatly reducing his chances for survival.
  • One of the main reasons Planet Miller isn't pulled into the black hole in spite of its proximity is that Kip Thorne made sure that Gargantua was a rapidly spinning black hole—and it turns out that the physics of rotating black holes differ from non-rotating ones. The sheer speed of Gargantua's rotation means there is a single stable orbit just outside of Gargantua's event horizon that is very stable. It was also stated, Miller's Planet to outside observers orbits Gargantua every 1.7 hours. On Miller's Planet, that means the planet orbits ten times a second around Gargantua , which is normally faster than the speed of light. But since the spin from Gargantua caused space to whirl around it similar to wind, Miller's Planet does not travel faster than light relative to its space as the laws of physics say you cannot travel faster than light relative to space, but space itself is not bound by the speed limit. As such, faster than light travel is possible by bending and twisting space. However, Gargantua would have to fill half the sky in order for it to be so close.  
  • The time dilation on Miller due to the gravitational forces of Gargantua would be tantamount to the planet moving through empty space at roughly 99.99999998% the speed of light.  
  • According to The Science of Interstellar by Kip Thorne, Miller's planet is shaped a little like a football, with one end constantly pointing at Gargantua. The waves are literally tidal waves, so it's not the waves coming toward you, it's the planet rotating under you and the fixed waves slamming into you. But because the planet doesn't rotate, the waves wouldn't slam into you. Fortunately, tidally locked planets can rock back and forth, and Thorne used this as a scientifically accurate loophole to explain tidal waves on a tidally locked planet. Also, because the water on Miller is mostly concentrated in the waves, you could have knee-high oceans, like the one shown in the film.
  • It is possible that the wave that killed Laura Miller was the same wave that Cooper sees receding from the area on which they landed, because Brand mentioned that Miller probably died minutes before their arrival.  
  • The intense waves of Miller are comparable to tidal bores on Earth. This phenomenon occurs when the leading edge of tides of the ocean are powerful enough to roll against water currents on rivers and bays. Seeing ripples on Miller's planetary ocean moving in the opposite direction of the enormous waves is proof of a tidal bore. As with the Pororoca of the Amazon River, Miller's tidal bores have eroded any recognizable landmass on the planet.

References[edit | edit source]

Community content is available under CC-BY-SA unless otherwise noted.